image enhancement4 Towards Unsupervised Deep Image Enhancement With Generative Adversarial Network Z. Ni, W. Yang, S. Wang, L. Ma and S. Kwong, "Towards Unsupervised Deep Image Enhancement With Generative Adversarial Network," in IEEE Transactions on Image Processing, vol. 29, pp. 9140-9151, 2020, doi: 10.1109/TIP.2020.3023615. -본 논문에서는 unpaired dataset을 활용한 image enhancement를 진행하며 UEGAN(Unsupervised image enhancement GAN) 네트워크를 제안하였다. 입력 영상을 타겟 영상(unpaired)으로부터 전이하고자 하는 특징(desired characteri.. 2021. 3. 17. Learning Dual Transformation Networks for Image Contrast Enhancement Learning Dual Transformation Networks for Image Contrast Enhancement -Authors: Yurui Zhu, Xueyang Fe and Aiping Liu -본 논문에서는 단일 영상 대비 향상을 위한 CNN 기반 네트워크를 제안하며, 기존의 CNN 기법들이 가장 기본적인 convolutional operation이나 영상의 local feature만 탐색하는 제한적인 방식에서 벗어나, 2가지 parallel branch를 통해 한 가지는 global contrast를 향상시키기 위해 global transformation curve를 재구성하고, 다른 한가지는 local detail를 복원하기 위해 pixel offset을 directly predict.. 2020. 12. 2. PieNet: Personalized Image Enhancement Network PieNet: Personalized Image Enhancement Network Authors: Han-Ul Kim, Young Jun Koh, and Chang-Su Kim -본 논문에서는 딥러닝 기반 personalized image enhancement 기법을 제안하며, 각 사람들 마다 영상에 대한 선호가 모두 다르기 때문에 먼저 사람 별로 영상에 대한 user preferences를 feature vector(preference vector)로 metric learning을 통해 embedding space에 모델링한다. 여기서 preference vector는 해당 사영자의 선호하는 enhancement style을 전달하는 역할을 수행한다. 다음으로 제안하는 네트워크 PieNet는 pref.. 2020. 12. 2. Underexposed Photo Enhancement using Deep Illumination Estimation (CVPR 2019) Underexposed Photo Enhancement using Deep Illumination Estimation (CVPR 2019) Authors: Ruixing Wang, Qing Zhang, Chi-Wing Fu, Xiaoyong Shen, Wei-Shi Zheng, Jiaya Jia -본 논문에서는 underexposed 영상을 향상시키기 위한 네트워크를 제안한다. 제안하는 네트워크는 이전 기법들과 같이 image-to-image mapping 형식이 아닌 intermediate illumination을 통한 image-to-illumination mapping 형식이며 다양한 illumination constraints와 priors를 고려한 새로운 loss function 또한 개발했다... 2020. 9. 9. 이전 1 다음